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Abstrnct - The  paper presents the  hardware 
implementation  and  initial  tests !?om a low-pow, high- 
speed reconfigurable  sensor  fusion  processor.  The  Extended 
Logic  Intelligent Roceaing System (ELIPS) is described, 
which  combines  rule-based systems, fuzzy logic, and ned 
networks to achieve  parallel  fusion of sensor signals  in 
compact  low power VLSI. The development of the ELIPS 
concept is being  done to demonstrate  the interceptor 
functionality, which particularly underlines  the high speed 
and low power requirements.  The  hardware  programmability 
allows the  processor to reconfigure into different machines, 
taking the most efficient  hardware  implementation  during 
each  phase of information processing.  Processing speeds of 
microseconds  have been demonstrated  using our test 
hardware. 
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1. Introduction: 

1.1. A general need for sensor fusion processors: 
With  the  advent of high-performance sensors and 

increased  processing  power  more real time 
applications  are  now  possible.  Novel  architectures, 
algorithms,  and  hardware  are  required to address  the 
challenges of high  sensor  bandwidth  and  the often 
noisy, sometimes  contradictory data present  in  these 
new  applications.  The  problem of using  more sensors 
with  higher data rates is combined  with  the  need  for 
faster  response  in real time scenarios, which demands 
higher levels of computational  power.  The  traditional 
approach is to  builduse increasingly p o w d  
general-purpose processors. Yet,  classical  algorithms 
for  fusing data (originating  in  preponderant  Bayesian 
approaches)  face  challenges  in  addressing  the  sensor- 
fusion  problem  and  more  novel  approaches,  such as 
the  ones  coming from the  computational  intelligence 
research,  can  complement  or  replace  the  traditional 
schemes. 

Computational  intelligence  techniques,  such as 
fbzzy logic  and  neural  networks  combined  with  the 
more  traditional  Artificial  Intelligence  paradigm of 
expert  systems  proved eficient in solving a category 
of problems  for  which  an  accurate  mathematical 
formulation of models was either  not  feasible  or 
practically  impossible  to  compute  in  useful  time.  The 
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most  pertinent  examples of such  problems  are  in 
pattern  recognition  and  decision-making  applications. 
These  techniques  are  essentially  parallel,  and  thus  it is 
natural to build  dedicated  processors  efficient  for these 
types of operations,  which  would hct ion in  stand- 
alone  mode  or  as  co-processors  to  provide  high-speed 
computation on massive amounts of data  in  parallel 
mode.  While  these  processors  can be built  both  in 
digital or analog  hardware,  the  massive  amount of 
interconnection  lines of a'parallel  implementation  and 
the  power  requirements  encountered  in  certain  space, 
military  or  commercial  applications  such  as  hand-held 
devices make  the  idea of an  analog ASIC processor 
preferable. An example of such  an  application 
requiring low power  and  fast  processing of sensor data 
is associated  with  the  discrimination  performed 
onboard  interceptors. 

1.2. Discriminating  Interceptor  Technology  require- 
ments  for  an  on-board  sensor  fusion  processor: 

The  Ballistic  Missile  Defense  Organization 
(BMDO) is conducting  the  Discriminating  Interceptor 
Technology Program ( D I P )  for  the  development of 
advanced  and  enabling fast fiame  seeker  capabilities. 
The  challenge  for  the  technology is to combat  more 
complex fuhm threats facing  the  National  and  Theater 
Missile  Defense (NMD/TuD). The  objective is to 
develop miniaturized  interceptor  components  and 
subsystems  to  meet serious space,  weight,  and  power 
constraints [l]. In this regard, part of a  major  effort is 
directed  towards  the  development of new  sensor  data 
fusion processing  technology  that  will  particularly 
address  high  speed  and  on-board  autonomy. This 
capability  can  achieve  earlier  target  acquisition, 
thereby  extending  the time-toengage and  reducing  the 
dependence  on  the  external  battle  management  and 
off-board  surveillance  assets[ I]. 

Once  the  initially  required  off-board  battle 
management  intelligence is provided  to  the  seeker,  the 
primary  goal of the DITP is to exploit the  multi- 
phenomenological  sensor  data  obtained from on-board 
LADAR and  infrared  detector  arrays  for threat 
engagement  via  development  and  integration of real- 
time  sensor  fusion  algorithms  and  processors.  The 
ovemding hypothesis is that  sensor  data  fusion  at 
three levels (i.e., signal,  feature,  and  decision) is 



necessary  to  improve  its  capability  and  to 
accommodate  a  wide  variety of missions  and tare. 

In  order to meet  the  challenge of compact,  low 
power,  and  high-speed  on-board data processing,  a 
novel  intelligent  sensor  data  fusion  processing 
architecture,  termed  the  Extended  Logic  Intelligent 
Processing  System  (ELIPS), has been developed. 
ELIPS  integrates  the  analog  hardware  technology of 
neural  networks, fuzzy logic, and  expert  rule 

'>messing with  the  conventional digital processing 
using a host  computer.  The  individual  modules are 
designed  to  be monfigurable and  cascadable. In 
addition,  the  overall  architecture has been  developed 
to be flexible  enough  for  rerouting of signals  to  any 
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interconnecting network with  switching  arrays. 
This paper  briefly describes the ELIPS concept 

and  architecture,  focusing  more on the  hardware 
implementation of the  individual  ELIPS  component 
modules.  Experiments  with test chips  implementing 
ELIPS  modules  illustrate  the  performance of the 
analog  ASIC  implementation. 

2. Fuzzy,  Expert, And Neural  Computation: 
Expert  systems  have  been  employed  in  a  variety 

of sensor  fusion  applications;  a  recent  example is 
detailed  for  guiding  the user in  defining  the 
architecture  for  the sensor fusion  system[2]. Fuzzy 
logic and  neural  networks  are also  becoming  widely 
accepted  in  the  sensor  fusion  community as techniques 
with  proven  capabilities  in  sensor h i o n  
appliations[34]. 

Conditional  rule-based  systems are using  rules of 
theform"LFaisAANDbisBTHENyisY'whme 
a,  b,  and y are  the  input  and  output  variables 
respectively,  and A, B, Y are classes - in  particular 
fuzzy classedsets. Thus, a rule-base  system  can be 
seen as accepting  input data from measurements or 
preprocessing  and  providing  outputs as transformed by 
the  rules. In particular  the  outputs  could be associated 
with classes to which  the  inputs  cluster  and the 
magnitude of the  outputs  associated  to  the  degree of 
membership to  these  classes.  (Another  possible 
interpretation is that  the  numbers  represent  the 
confidence  in  the  classification,  e.g. 70% confidence 
that  the  object is target 1,20% that it is target  2, 1 0 ? ?  
confidence  that  it is a  decoy.) 

New  concepts  fiom fizzy set  theory  have 
revitalized  the use of rule-base  systems,  which  can 
cope with  the  imprecision  in  matching  antecedent 
clauses. The  main  operations of fuzzy reasoning  are 
fuzzification,  rule  evaluations  and  defuzzification. 
Fuzzification  transforms  a  crisp  input  to  a  degree of 
membership to a f irzzy set and  certain  rules are 
evaluated  depending  on  which fuzzy sets are  matched. 
For  certain  problems  such  as  classification,  this is the 

end of fuzzy reasoning - the  output  results  are fuzzy  
sets and  degrees  to  which  they are matched For 
example,  the  output  result  can be that  input  signals 
match  the  characteristics of target A to 0.8 extent, 
targets B in  degree 0.4 and  decoys  in  degree 0.3; 
sometimes  this  can be (improperly)  expressed as 
probabilities, i.e., there is 80% chance/probability/ 
confidence  that  object is target A, etc. I f  the  desired 
output is a  crisp  one,  for  example  an  output  control 
signal - the  output sets and  the  associated  degrees of 
memberships are transformed  by a  defuzzifier into a 
crisp  value.  Amongst  the  most  popular  methods for 
defuzzification is the  center of gravity  method,  which 
requires  mainly  additions  and  multiplication. 

Neural  networks  are  parallel  computation 
structures  characterized  by  somatic  operation between 
inputs  and  weights  and  somatic  operations  aggregating 
the  weighted  inputs  and  usually  passing  them  through 
a nonlinear  function. Diffient neural  architectures 
were  explored,  with  different  ways of interconnecting 
the  neurons in feed-forward  only  or in recurrent  mode 
as well, and  with a  variety of learning  rules. 

Requirements  for  fast  processing,  compact  or  low 
power  implementation  lead  to  efforts  for  developing 
various  hardware  implementations.  The  nature of ' 

computations involved in fuzzy reasoning is 
essentially  parallel  (for  example,  rule  evaluations  are 
independent of each  other  and can be  calculated 
concurrently).  Therefore,  a  dedicated  parallel WW 
solution is preferable to  a S/W solution  on  a  general- 
purpose  processor  and even to a RISC processor  with 
fiuzy-oriented  instructions  such as W86C570 (70- 
microsecond  inference  speed)[5]  or  Motorola's 
68HC12  (the 1'' standard  microcontroller  family  with 
a  comprehensive fuzzy logic instruction set, and  the 1" 
16-bit  engine  for fuzzy logic)[6].  Ideally  one  would 
want to preserve  high  versatility of geneml-purpose 
processors  while  reaching  low-power  high-speed 
operation.  Analog offers  the  advantage of lower power 
consumption.  While  better  precision  can be obtained 
in digital implementations,  precise  computations are 
not  required  for fuzzy processing;  usually 8 bits are 
considered  sufficient  for  most  applications.  (This is 
because  membership  functions  representing fuzzy 
classes are  usually  defined  by  humans,  who can not 
and  do  not  specify f h z y  set borders  with  high 
precision - usually  with less than 8 bits).  Specific 
implementations of f imy processors are described  in 
the  literature[7-11]. 

The  same  parallelism is true  for  neural  processing, 
and  ideally WW implementations  should  be  parallel 
for  maximum efficiency. Similarly  for fuzzy expert 
systems,  large  number of interconnections  and  low 
power  justify  analog VLSI neural  processors. A 
detailed  justification of analog  neural  processors is 
presented  in  Ref [ 121. 



3. ELIPS  Concept And Architecture: 
The  main  assumption  behind  ELIPS is that fuzzy ,  rule- 
based  and neural forms of computation  can  serve as 
the  main  primitives of an  “intelligent”  processor. 
Thus,  in  the  same  way as classic processors are 
designed  to  optimize  the  hardware  implementation of 
a set of fundamental  operations,  ELIPS is developed 
as an efficient  implementation of computational 
intelligence  primitives,  and  relies on a set of fuzzy  set, 
fuzzy inference  and  neural  modules,  built  in 
programmable  analog  hardware.  The  hardware 
programmability allows the  processor to be 
reconfigured  into  different  machines,  taking  the  most 
efficient hardware  implementation  during  each  phase 
of information  processing. 

The  ELIPS  architecture  (Figure  1) is designed  to 
accomplish,  for  the first time,  a  fully  parallel 
implementation  and  seamless  integration of three 
artificiaVcomputationa1 intelligence  technologies[ 131: 
(1)  membership-function-based f k z y  logic; (2) rule- 
based  expert  systems;  and (3) massively  parallel 
artificial  neural  networks. In its  initial  demonstration, 
ELIPS  will  perform  functions of discrimination, 
recognition, tracking, and  homing [l]. It is necessary 
to  develop  a  design  that is hardware-implementable 
using  very  large  scale  integration (VLSI) technology. 
Additionally,  it  should  provide an ultra low  power 
embodiment  in  a  compact  package, with an 
unprecedented  signal  processing  speed (10 to 15 
microseconds for each  operation),  at least three orders 
of magnitude faster compared to a  conventional  digital 
machine (e.g. several  milliseconds  on  a  personal 
computer,  PC). 

ELIPS is envisaged as a  synergistic  processor 
incoprating four  processing  modules  illustrated  in 
Figure 1. PFN  and  PRN  refer to Programmable  Feed- 
forward  and  Recurrent  (feedback)  Neural  networks, 
respectively,  FSP is a  Fuzzy  Set  Processor,  and 
MERP stands for Multistage  Expett  Rule Rocessor. 
ELIPS  modules  are  destined  to  work  cooperatively  in 
a  variety of configuration  sequences.  For  example, to 
implement fuzzy  expert  reasoning as a  processing 
sequence of PFN,  FSP,  and MERP modules, 
fuzzification is performed  by  FSP,  rule  evaluation is 
done  by MERP, while  defuzzification  (when  needed) 
is done  using  the  PFN. 

4. Elips Building Blocks And Their  Hardware 
Implementations: 

4.1. The  neural  (PFN  and PRN) modules: 
Neural  network  modules  are  implemented  around 

a  neural  chip-architecture  developed  at  JPL[12,14]. 
The  chip,  termed NN64, consists of a 64 x 64 array of 
8-bit  synapses  with 8-bit local  static  memory, 64 

neurons,  and  registers for data  and  control.  The  chip is 
designed  to  implement  a  feed-forward or a  recurrent 
neural  network  with  various  network topologies with 
up  to 64 neurons. 

4.1.1 Functional description of analog processing in 
hW64: The 64 analog  voltage  inputs first get 
converted  to  currents  by  a  row of V-I converters  at  the 
top of the 64 x 64 synaptic  array.  Each V-I circuit 
actually  produces two currents: I and  16 x I. These 
signals are  then  broadcast  down  each  column  for  each 
of the 64 inputs so that all the  synapses  in  a  column 
receive the  same  input. 

The  building  block  for  the NN64 array is a 
current-mode  multiplying  analog  to  digital  converter 
(MDAC)  which foms the  basis of the  synapse  (Figure 
2). A  byte,  which  controls  switches Dl to  D7 to scale 
current copies of the input, is stored  in  a  local  static 
memory (SRAM) for  each  synapse.  By  switching  in 
different  multiples of the  input  current  and  adding 
them  together,  the  input  current is effectively 
multiplied by the  digital  weight  stored in the  local 
SRAM. The  most sigdicant bit (MSB) of the  digital 
weight  (D8+/D8-)  controls  the  sign of the  product  by 
steering  the  synapse  output  current so that it is either 
sunk or  sourced  through  the  output  node.  Synapses on 
the  same  row  have their outputs  summed  by  attaching 
them  all  to  the  same  wire.  These 64 signals,  one  for 
each  row of the  array,  are  then  sent to 64 separate 
neurons  where  they  are  either  processed  through  the 
neuron  or  sent  directly  out,  depending on how  the 
neurons  are  programmed. If  the  neuron is on, the 
current is converted to a  voltage  through  a  small 
resistor  and  applied to  a  small  differential  amplifier 
that outputs a  voltage.  Should  the  neuron be off, the 
output  current is routed  directly  out off the  chip as a 
Current. 

4.1.2. Digital  programming of NN6: The  synapses 
are  loaded  single TOW at  a  time.  The data for  a  given 
row is clocked  into  a 64 long  8-bit wide shift register, 
one  byte  at  a  time.  After 64 clock  cycles, the data for 
an  entire  row of synapses is ready to be loaded  into  the 
local  memory of each  MDAC.  A  &bit  row  address is 
supplied  and  an active-low load  signal is asserted, 
which  dumps  the data into  the  synapses  on  the  row 
specified.  Alternatively,  a  synchronous  loading 
scheme  may be used This method employs  a  single 
bit  shift  register  to  act  as  a  token  ring  and specifL 
consecutive rows  for  loading.  When  reset is asserted, 
the  top of the  token  ring  corresponding to row 1 is set 
while the  rest of the  shift  register is reset.  As data is 
clocked in,  a  6-bit  counter  keeps  track of how  many 
bytes  have been loaded When  the  carry-out of the 
counter  indicates  that  the  entire  data  has  been  loaded, 
a  load  signal is automatically  generated  that  activates 



the  row  on  its  rising  edge  and  passes  the  token  to  the 
next  row  on  its  falling  edge. In this  way  the en& 
array of synapses  can  be  loaded from the  top  row 
down  by  simply clocking in 4096 bytes of data. 
Neurons are also programmed  with  a single bit shift 
register. If a  control  signal is asserted, all neurons  are 
automatically  bypassed  since  the entire register is 
reset. Otherwise, a  single bit is clocked 64 times  by  a 
special clock. The  register loads fim the  bottom up so 
that  the first data loaded  corresponds  to  the first row 
neuron.  More  details on the NN64, including  its 
configuration as a  recurrent  neural  network can be 
found  in  the  literature[l4].  The  chip  was  tested  in  a 
variety of applications  where  neural  networks  proved 
efficient.  A particular  application was interpretation of 
visual input  data  for  automatic  tracking of a  path  by  a 
mobile  robot[ 131. 

4.2. The fuTzy set processor (FSP) module: 
The  main  fimction of a ~ ~ I Z Z Y  set processor is 

signal  transformation,  which can be interpreted as, 
0 fuzzification - i.e. association between an  input 

crisp  signal  and  a  degree of membership to  a 
fuzzy set/class,  or 

0 signal  conditioning/  non-linear  transformation, 
coordinate  transformation. 

The  FSP  was  designed as a  processing 
module  with  16  inputs of 5 membership classes each. 
The  chip  has  16 analog voltage  inputs  and  16x5 
outputs,  and allows  digital  programmability of the 
membership  functions for each  input  variable.  The 
membership  functions  have  trapezoidal  shape,  with 
programmable  parameters  for  the legs and slopes as 
illustrated  in  Figure 3. The  position of the legs can  be 
specified  with  8-bit resolution and  the slope  with  5-bit 
resolution.  The  equations  that  describe  the  output of a 
trapezoidal  membership  fimction  are: 

IfXC=A,Y=Low 
If  A C X = C (CD+ABY(B+C),  Y=MTN(BX-AB + 
Low,  High) 

+ Low,  High) 
I f  (CDtAB)/(B+C) c X C D, Y=MIN(CX + CD 

If  X> = D,  Y=  Low, 
where  A is the  location of the  left  leg,  B is the 
unsigned  slope of the  left leg, C is the  unsigned  slope 
of the  right leg, and D is the  location of the  right  leg. 
The  chip  design  currently uses Low = 1 volt and  High 
= 4  volts  with  Vdd = 5 volts. 

The  schematic diagram in  Figure 3 details  the 
processing  path of a  single membership  function 
circuit  (MFC).  While  inputs  and  outputs  are  in  voltage 
mode  for  external  compatibility,  the  internal  MFC 
implementation  is in current-mode.  The  input  voltage 
enters  the first processing  block,  which is a  Voltage to 
Current  (VA)  converter.  Currents  proportional to the 
digital  values of the  legs,  A  and D, are  generated  in 

Multiplying  Digital  to  Analog  Converters  (MDACs). 
The  current  corresponding  to  the  left leg gets 
subtracted  from  a copy of the  input  current,  while  a 
different  copy of the  input  current gets subtracted fiom 
the  right  leg  current.  The  resulting  currents,  which 
correspond  to  the  left  and  right sides of the  trapezoid, 
enter  their  appropriate  Dividing  Digital to  Analog 
Converter  (divDAC)  where  the  signals  are  divided  by 
5-bit  digital  values  to  scale  the  slopes.  The  minimum 
of the  two  resulting  values is then selected  which 
chooses the  side  that is along  the  trapezoid.  The  top of 
the  trapezoid is achieved  by  taking  the minimum of 
the  resulting  current  and  the  full-scale  current,  and this 
result is converted to the  voltage  output of the  MFC.  A 
test chip  for 2 input  variables  with 5 membership 
functions  calculating  the  degree of membership has 
been  implemented  and tested A  variety of 
membership  functions  generated  by  the  chip is 
illustrated  in  Figure 4. 

Signals obtained  from  the  chip  are also illustrated 
below in  a  discrimination  task.  The  results  are 
compared  with  the  software  implementation  and  show 
accurate  reproduction  in  hardware of the  results 
obtained  by  simulation.  Figure 5 shows  an  example of 
how  the  membership  functions  are  used  to  separate  the 
spaces  containing  targets  and  decoys.  The  software 
simulated  membership  function  shapes  are  compared 
with  the  programmed  hardware  output of the 
membership as shown  in  the  lower  graph in Fig. 5. 
The  variables  are  transformations of some  measured 
parameters  characterizing  target  and decoy  signals. 
The  software  results show that signals  processed  using 
these  membership  functions  would  result  in 
discrimination of targets  and  decoys, as well as targets 
of different types based on available  DITP  data.  Figure 
5 shows  discrimination  between  two  targets. 
Similarly,  discrimination  distinguishing  targets  fiom 
decoys  was also performed successfully by 
programming  the  chip.  The  hardware  tests  show  that 
the fuzzificatiox~/discrimination of this type would  take 
less than  a microsecond 

43. The  multistage  expert-rule  processor (MERP) 
module: 

The  main  fimction of a  rule  processor is to 
evaluate  matches  between  input  data  and  classes of 
knowledge  (the  satisfaction of certain  conditions  by 
the  input)  and  prescribe  the  implications  for  such 
cases. The  general structure of processing  in  MERP is 
by  inference  on a collection of rules of the  form: 

Rule 1.  IF al is All AND  a2 is A12 AND ...a,,, is 
Al,THEN y is Y ,  
... 
Rule n. IF al is AND  a:! is A,,z AND ...a,,, is 
A,,,,, THEN y is Y ,  



where Aij are f izzy  sets or  their  complements, i.e. if 
A,, is  a predetermined  trapezoidal  membership 
function/fuzzy set and A& is its  complement  then A& = 
NOT(A,,).  Consider  the degree of membership/ 
matching a fuzzy &class  being  calculated by the 
FSP,  and  thus  “a is A” being  replaced  with u, which is 
the  degree  to  which  “a is A”. The  complement is 
commonly  calculated  either as the  difference to unity, 
i.e. NOT(u) = 1 - 4  or as the maximum of all other 
classes except  the  one to be  complemented, i.e. if 
classes  covering  input  space are u1,3,3,u4 then  the 
complement is NOT(3) = MAX(ul,d,u4). We  built 
test  circuitry to calculate  the  complement  in  both  ways 
but only the second  version was so far  integrated 
within  a rulesystem chip.  The  conjunction AND is 
treated as the MIN operator.  Thus,  the  antecedent “al 
is 4, AND a2 is Ad AND ...a, is can be  read 
after  fuzzification as (u,,l AND U,Q AND b) and 
calculated as u,, = MIN(bl, M, ..., u,,,,,). The collection 
of rules  in  the  rules base can be read as Rule1  OR 
Rule 2 OR ... Rulen;  several  rules  may  refer to the  same 
conclusion/class.  The logical connective OR is 
calculated as MAX, thus  the  degree of supporting  an 
output class is the  maximum of all the  degrees of 
supporting that class coming  fkom  different  rules  in 
the  rule-base. 

The  processing  stages  calculating  complement, 
conjunction  and  disjunction are reflected  directly  in 
the MEW architecture  presented  schematically  in 
Figure 6. Stage 1 calculates  the  complement  by MAX 
operation;  Stage 2 calculates  the  conjunction within 
the  same  rule  by MIN operator, Stage 3  calculates  the 
disjunction of all rules  that  refer to the  same 
conclusion  by MAX operator.  The  controls specify 
which  components  are selected for MIN and MAX in 
different  rules. 

The MEW module is designed as a  processing 
module  with  16  inputs  with 5 membership classes 
each;  a  complement is calculated  for  each  membership 
class inside  the  module.  The  module  supports  rules 
with  up to 64 conjunctions;  up to 128 rules  can  be 
programmed  in  the  module  and 32 decisions can  be 
obtained  as  outputs.  The  implementation of the MEW 
module is performed  in  four  development  phases 
allowing  testing of various  circuits  (such  as  analog 
MM  and MAX circuits)  and systedintegration 
solutions  before  a  full-scale  more  expensive  chip is 
attempted.  Figure 7 shows  test  results  from a 
fabricated M M  circuit  (the  upper  waveforms  are  the 
input  and  the  lower  one is the  output,  which is the 
minimum of the two). 

A  smaller  version of MEW (called  miniMEW) 
with 2 inputs  and 4 rules  was  laid  out  on a  test  chip. 
The  chip  was  fabricated  and  tested successfully. The 
propagation  time of a  signal  from  inputs to output  was 
around two microseconds.  Phase 3 of development 

consists in  integrating 8 analog  inputs, 40 membership 
functions  and 9 rules  circuits on the  same  Fuzzy 
Expert  System  (FES) chip. The  membership  functions 
are  digitally  programmable  trapezoids.  The  rules  are 
digitally  programmed to  select from various 
membership  functions for each  input  variable, 
including  membership  function  complements.  Each 
rule  performs a  conjunction  amongst  selected 
membership  functions  and  their  complements  (one per 
variable). All  analog  circuitry is current-mode  and  the 
rule  output  currents  are  available  in  parallel on nine 
separate lines. The chip  was  fabricated  and is 
currently  under test. 

4.4. Integration of ELIPS  components 
Efforts  are  ongoing  for  testing  the  synergistic 

operation of ELlPS  components  before  the final cut- 
off design. In this sense a board is prepared to  test  a 
Hybrid  Neuro  Fuzzy  Expert  System (NFES). 

4.4. I Hybrid Neuro Fuzzy Expert  System (1vFES): 
A  new  test  chip,  termed  ELIPS3,  contains  the  second 
generation  Membership  Function  Circuit  (MFC) 
which is  a voltage  inputloutput  circuit  that uses 
current-mode  processing  and is digitally 
programmable  with a  generic  trapezoidal  shape 
membership  function.  ELKPS3  contains  ten MFCs, 
five of which are associated  with  each of the two input 
variables.  Another test chip,  termed  FES1,  contains  a 
similar  circuit  for  the  membership  function  processing 
but  the W output  conversion is eliminated  and  the 
current is directly  passed  to  the  rule  circuits,  which are 
part of the MEW. Current-mode d e  circuits  process 
the  membership  function  information  on  the  same  chip 
before  creating as output  the conclusions of nine 
different  digitally  programmed  rules.  The  rules  are 
conjunctive (AND) and  complemented  or  non- 
complemented  membership  function  values  may  be 
used  for  processing.  FESl  contains forty membership 
function  circuits  with five associated  with  each of 
eight  input  variables.  Each of the  nine  rules  may  be 
configured  to process any  combination of 
complemented  or  non-complemented  membership 
values  from  any of the  eight  input  variables. 

4.4.2 FAAW Board: The  Fuzzy-Artificial  Neural 
Networks  (FANN)  test-board  was  designed  to  test  the 
FESl  fuzzy-expert  chip  as  well as to  allow 
configurations of neural  and fimy systems  that 
combine two NN64 chips  and  four  FESl  chips.  The 
board  also  includes  four  analog  multifunction 
converters  capable of performing  defuzzification 
processing  and  enabling a fuzzy  system  entirely  in 
hardware. A photograph of the  test-board is shown in 
Figure 8. The  different  system  architecture 
configurations are achieved by setting  the  appropriate 



jumper blocks,  while  the  membership  function shapes, 
rules,  and  neural  network  weights  can  be  programmed 
through  the  computer  interface.  LabVIEW Full 
Development  System 5.1 software is  used  to program 
the  FANN  via  National  Instruments  ATMIO64E-3, 
PCI-DIO-96,  and AT-AGIO  interface boards, which 
provide  the  required  analog  and  digital YO. The 
LabVIEW  Fuzzy  Toolbox is used to provide  a  high- 
level user interface  for  programming  the FESl chips, 
allowing the user to  specify  a  high-level fuzzy system 
that  then gets translated  and  downloaded  to  the iiuzy 
hardware  on  the  FANN board. 

The  board allows 4 FES chips to be  mounted on 
it, such  that up to 36  rules  can be programmed. In 
addition, the board  incorporates  the design for  testing 
of the  neural  network  chips,  with 2 NN64 chips and  a 
group of 16 quad - A/D chips.  The board aims to play 
multiple  roles, allowing 
0 the  test of the  FES  and NN64 chips  individually, 
0 the test of the  chips  in  tandem  configuration, e.g. 

0 the  test of the fusion algorithm in hardware,  using 
FES followed by NN64, etc. 

the  neural  chips. 

5. Conclusions: 
Current  technology allows  the  realization  of  a 

sensor fusion  processor as a multi-chip  module 
(MCM).  A trade-off is to be ma& between the 
perfomance and cost of such  a  processor. 
Computational  intelligence  elements  such as fuzzy 
reasoning  and  neural  networks technology are 
considered  fuodamental  for  a  sensor  fusion  chip. 
Several test chips  implementing  components of the 
ELIPS  sensor fusion architecture  have beem fabricated 
in  analog  VLSI  hard-  and  demonstrated  processing 
times of the  order of microsecond  for  a variety of 
tasks, such as target classification from preprocessed 
data. 
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Figure 2. Circuit  for  the 8-bit synapse 

Figure 4. A variety of membership function shapes 
generated  on  the MFC test chip 
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Figure 5 (a). A simulation  result  showing  the  required 
trapezoidal  membership  functions for discrimination 
of two targets r l  and r2. 

Figure 5 (b). Membership  function  circuit  test  result 
showing identical  membership  functions. 

Figure 3. Block diagram of HW implementation  for  a 
MFC. 



Figure 6. A schematic of the MEW architecture 

Figure 8. A photograph of the Fuzzy-Artificial  Neural 
Networks (FANN) test-board populated with two 
NN64 and four FESl chips. 

Figure 7. Propagation  delay  test on a miniMERP 
circuit.  Bottom  curve is the  output, as the  smaller of 
the  two  inputs. 


